top of page

PUBLICATIONS

(20) Kuehl, N.J.; Taylor, M.T. "Rapid Biomolecular Trifluoromethylation using Cationic Aromatic Sulfonate Esters as Visible Light-Triggered Photocages." J. Am. Chem. Soc. 2023, 145, 22878-22884. 

 

DOI: 10.1021/jacs.3c08098

Originally posted on Chemrxiv: DOI: 10.26434/chemrxiv-2023-m9nsn-v2

Graphical Abstract_edited.jpg

(19) Townsend, J.A.; Fapohunda, O.; Wang, Z.; Pham, H.; Taylor, M.T.; Kloss, B.; Park, S.H.; Opella, S.; Aspinwall, C.; Marty.  Differences in Oligomerization of the SARS-CoV-2 Envelope Protein, Poliovius VP4, and HIV Vpu.  bioRxiv. 2023, DOI: 10.1101/2023.08.18.553902.

(18) Hoopes, C.R.; Garcia, F.G.; Sarkar, A.M.; Kuehl, N.J.; Barkan, D.T.; Collins, N.J.; Meister, G.E.; Bramhall, T.R.; Hsu, C-H.; Jones, M.D.; Schirle, M.; Taylor, M.T. “Donor-Acceptor Pyridinium Salts for Photo-Induced Electron Transfer Driven Modification of Tryptophan in Peptides, Proteins, and Proteomes using Visible Light." J. Am. Chem. Soc2022, 144, 6227-6236.

DOI: 10.1021/jacs.1c10536

Originally posted on Chemrxiv: DOI:  10.33774/chemrxiv-2021-r2nd2

Graphical Abstract.tif

(17) Taylor, M.T. "Photochemical protein modification in complex biological environments: recent advances and considerations for future chemical methods development.  Biol. Chem. 2022.  403, 413-420.

DOI: 10.1515/hsz-2021-0351

(16) Orellana, N.V.; Taylor, M.T. “Targeting Tryptophan for Tagging Through Photo-Induced Electron Transfer.” Synlett. 2021, 32, 1371-1378.*

*Invited contribution

DOI:  10.1055/a-1479-6366

Graphical Abstract.jpeg

(15) Tower, S.J.; Hetcher, W.H.; Myers, T.E.; Kuehl, N.J.; Taylor, M.T. “Selective Modification of Tryptophan Residues in Peptides and Proteins Using a Biomimetic Electron Transfer Process” J. Am. Chem. Soc. 2020, 142, 9112-9118.*

* Highlighted in Synfacts

*Top cited paper in JACS in 2020-2021

DOI:  10.1021/jacs.0c03039

JACS_2020_Trp.png

(14) Scinto, S.L.; Ekanayake, O.; Senevriatne, U.; Pigga, J.E., Boyd, S.J.; Taylor, M.T.; Liu, J.;  am Ende, C.W; Rozovsky, S.; Fox, J.M. "Dual-Reactivity trans-Cyclooctenol Probes for Sulfenylation in Live Cells Enable Temporal Control via Bioorthogonal Quenching.' J. Am. Chem. Soc. 2019, 141, 10932-10937.

DOI: 10.1021/jacs.9b01164

(13) M.T. Taylor, J.E. Nelson, M.G. Suero, M.J. Gaunt “A Protein Functionalization Platform Based on Selective Reactions at Methionine Residues.” Nature.  2018, 562, 563-568*.                      

*Highlighted in Chemical & Engineering News

*Highlighted by the Faculty of 1000

*Highlighted in Nature Methods

DOI:  10.1038/s41586-018-0608-y

(12) Taylor, M.T.; Fox, J.M. “Biosynthesis of the C15-acetogenin laurepoxide may involve bromine-induced skeletal rearrangement of a Δ4-oxocene precursor.” Tetrahedron Lett. 2015, 56, 3560-3563*.

*Invited contribution to a special tribute issue to the late Professor Harry Wasserman.

DOI:  10.1016/j.tetlet.2015.03.009

(11) Selvaraj, R.; Chintala, S. R.; Taylor, M. T.; Fox, J. M.  “3-Hydroxymethyl-3-phenylcyclopropene.” Organic Syntheses. 2014, 91, 322-337.

(10) Zhang, F.; Das, S.; Walkinshaw, A.J.; Casitas, A.; Taylor, M.; Suero, M.G., Gaunt, M.J. “Cu-Catalyzed Cascades to Carbocycles: Union of Diaryliodonium Salts with Alkenes or Alkynes Exploiting Remote Carbocations.” J. Am. Chem. Soc. 2014, 136, 8851-8854. 

DOI: 10.1021/ja504361y

(9) Panish, R.; Chintala, S.R.; Boruta, D.T.; Fang, Y.; Taylor, M.T.; Fox, J.M. “Enantioselective Synthesis of Cyclobutanes via Sequential Rh-catalyzed Bicyclobutanation/Cu-catalyzed Homoconjugate Addition.” J. Am. Chem. Soc. 2013, 135, 9283-9286.

DOI: 10.1021/ja403811t

(8) Seitchik, J.L.; Peeler, J.C.; Taylor, M.T.; Blackman, M.L.; Refakis, C.; Beckman, J.; Fox, J.M.; Mehl, R.A. “Genetically Encoded Tetrazine Amino Acid Directs Rapid Site-Specfic In Vivo Biorthogonal Ligation.” J. Am. Chem. Soc. 2012, 134, 2898-2901.

DOI: 10.1021/ja2109745

(7) Liu, D.; Tangpeerachaikul, A.; Selvaraj, R.; Taylor, M.T.; Fox, J.M; Ting, A.  “Diels-Alder Cycloaddition for Fluorophore Targeting to Specific Proteins Inside Living Cells.” J. Am. Chem. Soc.  2012, 134, 792-795.

DOI: 10.1021/ja209325n

(6) Royzen, M.; Taylor, M.T.; DeAngelis, A.; Fox, J.M. “Total Synthesis of Hycacinthacine A2:  Stereocontrolled 5-azacyclooctene Photoisomerization and Transannular Hydroamination with Planar-to-Point Chirality Transfer.”  Chem. Sci. 2011, 2, 2162.

DOI: 10.1039/C1SC00442E

(5) Taylor, M.T.; Blackman, M.L. Dmytrenko, O.; Fox, J.M. “Design and Synthesis of a Highly Reactive Dienophiles for the Tetrazine-trans-Cyclooctene Ligation.” J. Am. Chem. Soc.  2011, 133, 9646-9649*.

*Highlighted by the Faculty of 1000.

DOI: 10.1021/ja201844c

(4) Bongiovanni, J.L.; Rowe, B.W.; Fadden, P.T.; Taylor, M.T.; Wells, K.R.; Kumar, M.; Papish, E.T.; Yap, G.P.; Zeller, M.  Synthesis, Structural Studies and Solubility Properties of Zinc (II), Nickel (II) and Copper(II) Complexes of Bulky tris(triazolyl)borate Ligands.   Inorg. Chim. Acta. 2010, 363, 2163-2170.

DOI: 10.1016/j.ica.2010.03.010

(3) DeAngelis, A.; Taylor, M.T.; Fox, J.M. “Unusually Reactive and Selective Carbonyl Ylides for Three Component Cycloaddition Reactions.” J. Am. Chem. Soc. 2009, 131, 1101-1105.

DOI: 10.1021/ja807184r

(2) Jernigan, F.E., III; Sieracki, N.A.; Taylor, M.T.; Jenkins, A.S.; Engel, S.E.; Rowe, B.W.; Jove, F.A.; Yap, G.P.; Papish, E.T.; Ferrence, G.M. Sterically Bulky Tris(triazolyl)borate Ligands as Water-Soluble Analogues of Tris(pyrazolyl)borate. Inorg. Chem. 2007, 46, 360-362.

DOI: 10.1021/ic061828a

(1) Papish, E.T.; Taylor, M.T.; Jernigan, F.E. III; Rodig, M.J.; Shawhan, R.R.; Yap, G.P.A.; Jove, F.A. “Synthesis of Zinc, Copper, Nickel, Cobalt, and Iron Complexes Using Tris(pyrazolyl)methane Sulfonate Ligands: A Structural Model for N,N,O Binding in Metalloenzymes.” Inorg. Chem.  2006, 45, 2242-2250.

DOI: 10.1021/ic051579a

bottom of page